The Role of Computational Fluid Dynamics At Marshall Space Flight Center

Presented at:
Emerging Horizons of Turbomachinery Technology
Wilder, Vermont

May 11-15, 1998
Sponsored by Concepts ETI, Inc.

Roberto Garcia
Fluid Dynamics Analysis Division
Marshall Space Flight Center (MSFC)

Outline of Presentation

- MSFC's Roles and Responsibilities
- Fluid Dynamics Division
- CFD in the Design and Development Process at MSFC
- Cost vs. Value of CFD
- Accuracy
- Future Needs
- Summary

MSFC's Roles and Responsibility (as related to CFD)

- MSFC is the Center of Excellence for Space Propulsion Technology within NASA
- A primary MSFC thrust is to pursue activities that lower the cost of access to
- Operational systems: Space Shuttle Main Engine (SSME); Solid Rocket Motors
- Experimental or in Development: X-33, X-34, Reusable Launch Vehicle, Rocket Based Combine Cycle Engines, etc.
- MSFC performs numerous functions related to its Center of Excellence
- » Program development and management
- Engineering: design, analysis, coordination/integration
- demonstrations, materials testing, structural testing, etc. Testing: "cold flow" testing, "hot fire" testing of components, subsystem

Fluid Dynamics Division

- The Fluid Dynamics Division is part of the Structures and Dynamics Lab
- The Lab provides most of the advanced analytical support to MSFC programs
- CFD, Stress, Structural Dynamics, Thermal, etc.
- Lab also provides structural design and testing organizations and cold flow testing
- The Fluid Dynamics Division is divided into two branches
- Experimental and Analytical
- The two branches are mutually complimentary and are integrated
- » Most test supported with analyses and most analyses verified with testing
- Experimental facilities include:
- Two closed-loop pump test stands (150 Hp and 350 Hp) and one open-loop, all using water as the test fluid
- One long-duration blowdown turbine test stand that uses air as the test fluid
- » Tri-sonic wind tunnel
- » Rocket engine nozzle test facility that uses
- » Solid Rocket motor technology test rig

Fluid Dynamics Analysis Branch

- The analysis branch include several related disciplines
- » CFD, acoustics (including high frequency data reduction, induced environments
- Approximately 16 full time CFD users (out of a group of 27)
- We apply rather than develop CFD
- » Limited CFD code enhancements and customization
- We apply CFD primarily to reduce the cost of design and development
- Maximize analysis fidelity early while the design can be modified inexpensively
- Do not wait until the design is set in concrete to perform sophisticated analyses
- Increase likelihood that the first "final design" will be the last "final design"
- Continue supporting refinement of design throughout the detail design process
- Assess the design against requirements, assess for undesirable flow features
- Provide better environments for structural and thermal design and analyses
- Maximize testing value by assessing test plan, instrumentation location, etc.
- Support failure investigations

CFD in the Design and Development Process at MSFC

- CFD is applied to a broad range of components and subsystems
- Pump and turbine feedlines and feed manifolds
- Incompressible or compressible, steady, 3D
- » All primary and secondary flow paths in pumps
- Incompressible, single phase, steady, 2D and 3D
- All primary and secondary flow paths in turbines
- Compressible, subsonic to supersonic, steady and unsteady, 2D and 3D
- » Combustion chambers
- Compressible, reacting, multi-species, hydrogen and hydrocarbons, 2D and 3D
- Rocket engine nozzles and plumes
- subsonic to supersonic, reacting, multiple species, internal and external flow, 2D and 3D
- Launch vehicles ascent
- subsonic to supersonic, integrated engine with engine plume on, reacting, multi-species, various altitudes, 3D

RP Inducer-Impeller

blade pressures and velocity vectors

Turbine Rotor Blades

midspan absolute mach number

CFD in the Design and Development Process at MSFC

- This range of applications imposes unique constraints on our software
- We cannot afford to have specialized codes for type of application
- Management, training, support nightmare
- Rely primarily on three codes (2 of which are public domain codes)
- More efficient use of personnel
- We support development of the codes that we use
- Insufficient market for much of our unique applications for commercial development
- ¥ We require generalize grid generation and solution visualization tools
- Generally separate from the CFD code
- A tendency towards specialization among the personnel
- Grid or visualization specialists
- Turbomachinery vs. combustion device; internal vs. external flows
- Familiarity with the specifics of the particular flow being analyzed is key to successful application of CFD
- Minimize leasing of software, opt for public domain or purchase
- Due to uncertainty of year-to-year funding (government constraint)

Cost vs. Value of CFD

- Rocket engine hardware is extremely expensive to build and test
- Weight and performance at a premium
- » Designs generally have little margin
- Environments are very severe
- » Nearly every new program outside the experience base
- Very little direct scaling is possible
- Relatively high engineering and development cost due to limited production
- and software cost for the CFD group The cost of one SSME engine test is greater than the average yearly hardware
- impact it has on the hardware CFD represents a relatively small investment and overhead relative to the
- » Most of the designs analyzed are impacted by the CFD results

Cost vs. Value of CFD (continued)

- Computing cost are continuously decreasing
- Code robustness and convergence properties have improved
- Computing cost have dramatically decreased
- Super computer speed on \$35,000 workstations
- Sub-net of inexpensive workstations presents tremendous potential for parallelization and surge
- Mini-super computers with multiprocessors (up to 18) for less than \$500,000
- Compared to \$4 \$5 million a few years ago
- High chip speeds and inexpensive memory cost have led to improvements in interactive grid generation and visualization tools
- Personnel cost are the most significant over the long term
- Not too many good part-time CFD users; it is a full time job
- Reasonable theoretical and/or experimental background is very important
- Excellent computer skills including programming skills
- Must have some level of proficiency in all steps of the analysis process
- Must be able to relate CFD results to hardware design implications
- Dedicated hardware and system software specialist required even for small groups

Accuracy

- Predictable error is more useful than inconsistent accuracy
- Can adjust or account for the former
- Achievable accuracy varies from application to application

Often rely on relative differences in assessing design changes

- Higher accuracy can be expected for pressure or body force dominated flows than for viscous forces (and mixing) dominated flows
- Radial impeller performance near the design point can be predicted very accurately
- Diffuser performance prediction accuracy is not nearly as good (test final design)
- Lack of accuracy often caused by improper analyses application
- Improperly applied or located boundary conditions
- Steady analysis of inherently unsteady flows (i.e., diffusers)
- Benchmark only to the level required to verify code/model fundamentals
- Establish code suitability and grid requirements
- Elaborate benchmark demonstrations have limited value

Future Needs

- Practical incompressible time-accurate capability
- Impeller-vaned diffuser interaction
- Cavitation modeling capability
- Tremendous numerical and physical modeling challenge

Every single rocket engine pump cavitates during normal operation

- Inherently unsteady
- Hybrid schemes for internal and external flows
- » Facilitate grid generation of complex geometries lifting body with engine, inducer with tip clearance, etc.
- Must address pre- and post-processing issues
- All sorts of automation:
- Automated grid generation for specific components
- Automated solver initialization based on past results
- and the disciplines requiring the CFD output (stress, thermal, etc.) Automated links between the geometric model (CAD) and CFD, and between CFD

Summary

- CFD is used at MSFC to support the design and development of propulsion and vehicle systems
- CFD is part of the process that includes testing
- Broad range of applications at MSFC leads to unique CFD requirements
- CFD is good value relative to the cost of testing and redesign
- Known inaccuracy is important for proper application of CFD results
- developer's attention Unsteady pumps flows, cavitation, and complex geometries require CFD